India’s Worst Air Pollution is Inside Its Homes

airpollutionindiaAir pollution in India is mainly comprised of Particulate Matter (PM) 2.5, PM 10, ozone, and CO__; outdoor air pollution, that is. India also struggles with indoor air pollution, an issue that does not necessarily produce the massive clouds of smog that are so iconic of outdoor air pollution. Yet indoor air pollution is actually an even larger problem than India’s outdoor air pollution. For perspective, Delhi, India is now the most polluted city in the world, tied only with Beijing. India’s outdoor Air Quality Index (AQI) measures at 153, well into the Unhealthy range that is highly dangerous to inhabitants’ health. For indoor air pollution to be even worse means that Indians are being exposed to extremely dangerous air pollution at all times every day.

Indoor air pollution can come from appliances such as toasters, refrigerators, and air conditioners; substances like asbestos, formaldehyde, and lead; and smoke from tobacco and cooking, among other sources. In most countries, indoor air pollution is regulated, appliances are required to be within certain standards, and clear guidelines are given for what levels of indoor air pollution are healthy and unhealthy. India, however, has none of these, which leads to the monstrous indoor air pollution plaguing the country. The chronic air pollution that Indians are subject to can lead to respiratory issues and even cancer.

In a recent study, outdoor air pollution is the fifth largest killer in India, while indoor air pollution was the second, behind only high blood pressure. In 2010, 1.3 million Indians died of indoor air pollution. Globally, indoor air pollution killed 4.3 million people. The issue is especially poignant in India, as there is very little public concern for the issue while it obviously continues to be a major health risk. In India, 27.5% of all infant deaths can be attributed to indoor air pollution. The WHO norm for indoor air pollution is 20 unit grams per cubic meter of air. India’s indoor air pollution is at 375 unit grams per cubic meter of air, almost 19 times the standard. indoorairpollution

India’s government has made no move to combat the serious problem of indoor air pollution. Most Indian women and children spend the majority of their time indoors, leading to these massive health risks. Like China with the Under the Dome documentary, India needs something to spark public attention and make a move towards change. India is still developing, so it has the opportunity to be the first country to develop in an environmentally friendly way.

From Cotton Field to Vagina to Landfill: The Story of Tampons and Other Sanitary Products

Wait, My Menstrual Cycle Is Contributing to Environmental Degradation?

I know this not a topic that everyone wants to talk about. However, it has been a fact of life since the beginning of time. The average woman menstruates for 38 years in her lifetime. Unfortunately, in today’s world, 38 years’ worth of menstrual cycles translates into a lot of waste and energy. To be exact, there is approximately 62,415 pounds of sanitary products that end up in landfills[1]. Not to mention the countless tons of fuel that goes into producing these necessities. The truth of the matter is that sanitary items are one of the most unsustainable used products. In North America, over 20 billion pads and tampons are only used once before they are tossed. [2] But how exactly do sanitary items hurt our environment?

How the Waste Affects the Environment

 Cotton

Since most pads and tampons are made up of conventionally produced cotton, there has already been damage done before it even reaches the store self. Conventional cotton farmers usually treat the cotton with toxic pesticides such as aldicarb, phorate, methamidophos and endosulfan[3]. These chemicals are harmful to the people working with them and wildlife. Once sprayed, these toxins often move through the air to other nearby communities contaminating water sources, killing soil micro-organisms, bees, and other beneficial insects.[4]

This image displays all of the toxic chemicals that can be found in pads.

This image displays all of the toxic chemicals that can be found in pads.

Also, most of the cotton is then bleached with chlorine gas.[5] Once the cotton bleached chlorine enters a landfill, it becomes deadly to organisms living in water and the soil.[6] Another harmful chemical found in most sanitary products is called dioxin. Dioxin is a carcinogen that over time accumulates in the food chain. Within an organism it can trigger biological effects such as hormonal disturbances and alterations in cell functions[7] as well as adding to the risk of cancer, diabetes, heart disease, high blood pressure, and liver damage in humans.[8]

Plastic

It’s not only the cotton that’s harmful, but it is also the plastic applicators and the plastic wrapping. The manufacturing process of producing these disposables consumes a lot of energy[9] and nonrenewable resources which contributes to global warming. Most disposable pads and tampons are made from 90 percent plastic derived from crude oil.[10] When crude oil based plastics reenter the environment it releases large amounts of toxic pollutants which ultimately leads to devastating damage to wildlife and the natural landscape.[11] Combined with other super absorbent materials, the manufacture of sanitary items releases greenhouse gases: nitrogen oxide, sulphur dioxide, and carbon dioxide which are causing our planet to heat up.[12]

Alternatives

I too was shocked to realize that not only are these feminine products not good for the environment, but they are also harmful to my own health. Fortunately, there are healthier and eco friendlier alternatives. Natracare is a company that produces organic chemical-free pads and tampon. These products are more eco-friendly because they are bio degradable and do less damage to the environment since they are bleached without harsh chemicals or sprayed with pesticides.[13]

However, the best alternatives are menstrual cups or reusable pads which have life uses of 15 years. Products such as the Keeper menstrual cup claims those 40 years’ worth of disposables can easily be converted into as few as four menstrual cups![14] Similar to The Keeper, Lunapads claim to divert more than 1 million disposable pads and tampons from landfills every month. Over the course of one year, that is more than 12 million less feminine products contributing to environmental issues. [15]

This image shows how 4 menstrual cups can replace a truck load's worth of sanitary waste.

This image shows how 4 menstrual cups can replace a truck load’s worth of sanitary waste.

LEEDing the Way to a Greener World

I stumbled upon LEED while working on the Energy Challenge project in our Environmental Science class. While discussing ways to make buildings, such as our own school, more energy efficient, a classmate brought up the concept of LEED. She mentioned how a school down the street had become “LEED-certified,” making their newly built dorms incredibly environmentally friendly. At first I was puzzled. Based on this explanation, I thought of LEED as just a label, directly meaning clean and energy efficient. But after delving into some research, I discovered that it’s more than that. LEED is a carefully crafted movement designed to inspire businesses, schools, and others to “save money and resources and have a positive impact on the health of occupants, while promoting renewable, clean energy”.

Figure 1: This colorful and eye-catching LEED logo is one of the many ways that the USGBC is attracting businesses, schools, and others to become more energy efficient.

Figure 1: This colorful and eye-catching LEED logo is one of the many ways that the USGBC is attracting businesses, schools, and others to become more energy efficient.

So what is LEED, actually? LEED, standing for Leadership in Energy & Environmental Design, is an offset of the U. S. Green Building Council. This council was created in 1993 with a mission: to “promote sustainability in the building and construction industry”. And as this committee expanded, the purpose did too, as seven years later, the USGBC created a prestigious certification system to promote environmentally friendly buildings called LEED. LEED, most basically, is a point based rating system. As structures are being created, specific elements are given points for the design of the building itself, the building materials used, and the construction process. Examples of factors that are examined include “the energy envelope, the lighting, the daylighting, choosing non-toxic building materials, using recycled materials, protecting the landscape, plants, water collection and use“. Those who get the most points receive the greenest certification, the platinum award. In descending order, the next best awards include gold, silver, and simplify certified.

Figure 2

So why is LEED important? Having an energy efficient building is more than getting a shiny medal to put on you front desk, is it not? Well, yes, and no. There are cons to this procedure, and as always when combatting energy overuse is cost. First, registration is $1,200. Then, certification fees start at $2,750, but it only goes up from there. After my group for the Energy Challenge and I discussed St. Mark’s in relation to LEED with Mr. Warren, our headmaster, we discovered that large additions, renovations, and new building certifications can cost upwards of $20,000. St. Mark’s, while creating the new center, chose to adhere to LEED specifications but not become officially certified, believing that the money would be better spent elsewhere. As a student, this logic is virtually irrefutable. But as a business, there are major benefits to becoming LEED certified. The first would be the press. Corporations, schools, and homes may seem more desirable if they are more energy efficient, green and environmentally friendly. Secondly, in the long term, they are cheaper to sustain. As quoted from the USGBC website, “LEED-certified buildings cost less to operate, reducing energy and water bills by as much as 40%,”. And people are not shying away. Just this week, Mission College of Santa Clara, California earned a gold certification for it’s new Wilmor center’s features such as a “geothermal system that uses the ground as its heating and cooling agent and solar panels, which will help offset one-third of the building’s power consumption,” as well as “water-efficient landscaping, use of certified wood, efficient lighting controls and use of low-emitting materials“. Office buildings in New York City have set goals to have more green features, and just this past summer 8 West 44th Street received a gold certification. And it’s not just the United States that is part of this movement. Looking at figure 3 below, one can observe that countries around the world have become home to LEED certified buildings. With each day, the world takes a step towards becoming a greener place. Though there are both pros and cons to this LEED, I believe that if more people were to follow their guidelines, there would be major improvements efficiency wise. Though progress will certainly not be immediate, I am sure that LEED is leading the world to become a more environmentally place.

Figure 3: An infographic detailing the spread of LEED throughout the world, and it’s magnitude.

Strides Towards an Energy Efficient World

Energy efficiency is, at its roots, the concept of using and wasting less energy. Many of the most pressing threats to our everyday lives are the results of our (meaning humans) failure to achieve energy efficiency. Of these threats are global warming, diminishing resources, economic turmoil, illness-causing air pollution, reliance on fossil fuel, etc. Examples of energy efficient energy sources include solar energy, wind, and water. Harry Verhaar, head of global and public affairs at Philips Lighting and chairman of the European Alliance to Save Energy, gives a very refreshing and inspiring take on energy efficiency that we should all try to adopt. “Its logical,” he says, “because we simply waste too much. Some people call energy efficiency low-hanging fruit. I would even say energy efficiency is fruit lying on the ground. We only need to bend over and pick it up.” The successful implementation of energy efficiency would ultimately benefit the global community in practically every way possible. Climate change would ease up, our huge rates of pollution would decrease, and our reliance on unsustainable resources such oil, coal, and fossil fuels would be reduced. From an economic aspect, scads of jobs would become readily available in fields such as building upgrades, energy-efficient vehicle manufacturing, and the engineering of energy efficient everyday appliances such as lightbulbs, stoves, houses, etc. Not to mention, the massive weight of an impending economic collapse due to diminishing resources would be lifted from our shoulders. As can be seen in Figure 1 below, we are only decades away from reaching our absolute maximum rate of unsustainable energy usage until we are bound by the law of limitation to cut back.

Figure 1 (http://www.rmi.org/RFGraph-Fossil_fuels_global_production)

Image.ashx.html

Despite the simplicity of Mr. Verhaar’s fruit analogy, there are many difficult complications that arise from making strides towards energy efficiency. Cultural inertia is a term used to describe the concept that humans are so incredibly adapted to their reliance on coal, oil, and fossil fuel that the sudden transition to using only energy efficient resources would cost unfathomable amounts of money and would bring some of the most influential companies in the world crashing to the ground. Other complications are public skepticism and financial constraints. Quite simply, nobody is sure enough that the transition to energy efficient resources will be worth the massive funding that it requires. Overcoming these hindrances will be far from easy but, whether, gradually or suddenly, we must eventually sever our reliance on unsustainable resources if we want our planet to survive.

Sources:

http://www.nytimes.com/2014/12/01/business/energy-environment/energy-efficiency-may-be-the-key-to-saving-trillions.html?_r=0

http://www.greentechmedia.com/articles/read/taking-the-risk-out-of-energy-efficiency

http://www.bbc.co.uk/schools/gcsebitesize/geography/energy_resources/energy_rev1.shtml

http://www.rmi.org/RFGraph-Fossil_fuels_global_production